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1 Introduction
In a (first-price) all-pay auction, each bidder i ∈ I submits a non-negative
sealed bid xi for an item valued by player i at vi. It is similar to a stan-
dard (winner pay) first-price auction, except that losers must also pay the
auctioneer their bids.

The all pay auction is widely used in economics because it captures the
essential elements of contests. It has been used to model lobbying, techno-
logical competition and R&D races, political campaigns, tournaments and
job promotion contests.

In these notes we will show how to construct the mixed-strategy Nash
equilibrium of a two-player complete-information all-pay auction with com-
mon values.1 The main reference for this material is Baye et al. [1996] (and
the working paper version in Baye et al. [1990]).

2 Two players, full information and common
values

Assume there are only two players, i.e. I = {1, 2}, and symmetric common
valuations normalized to 1, i.e. v1 = v2 = 1. Each player’s strategy consists
of a bid x ∈ [0, B], where B > 1. Under complete information, the payoff to

1The argument presented here can be generalized; see Baye et al. [1996].
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player i with opponent j 6= i is given by:

ui(x1, x2) =


−xi if xj > xi,

1
2 − xi if xi = xj,
1− xi if xi > xj.

(1)

Formally, this game is defined by:

Γ :=
{
I, ([0, B])i∈I , (ui)i∈I

}
,

and we want to compute the unique Nash equilibrium of this game.

Theorem 2.1. The first-price, sealed bid, two-player all-pay auction with
complete information and common value v = 1 has a unique Nash equilib-
rium in which both players choose the same mixed strategy with cummulative
distribution G:

∀x ∈ suppG = [0, 1], G(x) = x. (2)

The proof goes a lot more smoothly if we prove a bunch of lemmas first.
I’ll do that in excessive detail, on purpose. Here’s a roadmap of the steps:

1. We can’t have equilibria in pure strategies (Lemma 2.1.1).

2. Both players’ mixed strategies must lie between 0 and 1 (Lemma 2.1.2)

3. The bottom of their supports has to be at 0. No player has a mass-point
at zero (Lemma 2.1.3 and Lemma 2.1.4).

4. Both players end up with zero expected utility in equilibrium (Lemma
2.1.5).

5. The top of their supports is at 1 (Lemma 2.1.6).

6. No player has any mass-points in (0, 1] (Lemma 2.1.7).

7. Both players randomize continuously on [0, 1] support, i.e. the distri-
butions have no gaps (Lemma 2.1.8).

Lemma 2.1.1. There does not exist a Nash equilibrium in pure strategies.
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Proof. Fix x∗ = (x∗1, x∗2), where xi ∈ [0, B] for each i ∈ I. We show that
x∗ can’t be a Nash equilibrium of the all-pay auction. The goal is to find
that, no matter what x∗1, x∗2 are, someone is not playing a best response, i.e.
there’s a superior alternative.2 This will be a bit tedious, as we have to go
case by case.

1. If x∗i > vi = 1, then x∗i 6∈ BRi(x∗j). The reason is simple: i’s payoff with
that bid is at most 1 − x∗1 < 0. Clearly, she’s better off by choosing
xi = 0 and guaranteeing a payoff of zero.

2. If 0 ≤ x∗i < x∗j ≤ 1, j would prefer choosing something closer to x∗i :
why spend more money than necessary to win? In symbols, for all
ε < x∗j − x∗i ,

uj(x∗) = 1− x∗j < 1− (x∗j − ε) = u(x∗i , x∗j − ε),

so x∗j 6∈ BRj(x∗i ).

3. If 0 ≤ x∗i = x∗j < 1, then i (or j) would prefer to pick x∗i + ε < 1, for
ε < 1/2. If they are splitting the prize, why should i not increase her
bid (very) slightly and guarantee a win? In symbols, for all ε < 1/2,

ui(x∗) = 1/2− x∗i < 1− (x∗i + ε) = u(x∗i + ε, x∗j),

so x∗i 6∈ BRi(x∗j).

4. Finally, if x∗i = x∗j = 1, then i (or j) prefers to choose 0 rather than
splitting the prize at 1. Right now each player is spending 1 to receive
half a prize, valued at 1/2, netting −1/2 payoff. Zero seems like a better
choice. In symbols,

ui(0, 1) = 0 > 1/2− 1 = u(1, 1),

so 1 6∈ BRj(1).

�

Now that we know we will be dealing with mixed strategies, we first
compute their supports. Let xi and xi denote the top and bottom of i’s
equilibrium strategy support, respectively.

2We don’t need to find the “best” alternative in each case, just a better one is enough.
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Lemma 2.1.2. For all i ∈ I, 1 ≥ xi ≥ xi ≥ 0.

Proof. Bids have to be non-negative by the definition of the two players’
strategy spaces. Moreover, by setting xi = 0, each player can guarantee at
least zero, ruling out bids greater than 1. �

Lemma 2.1.3. If xi ≥ xj, then xj = 0. Moreover, j will place no density
on the interval (0, xi). If, in addition, i has no atom at xj, then j will place
no density on the interval (0, xi].3

Proof. Let uj(xj, Gi) denote j’s payoff to bidding xj when i chooses the
cumulative distribution function Gi. Then, if i puts zero mass on xj,

uj(xj, Gi) = −xj,

since playing xj ensures j loses for sure. The same is true for any xj < xi:

∀xj ∈ [xj, xi), uj(xj, Gi) = −xj.

The above means that xj must be zero, and that j will never want to play
anything in (0, xi) – i.e., j’s chosen density should be zero in that interval.

If in addition i puts no atom at xi, then we can strengthen the above
statement:

∀xj ∈ [xj, xi], uj(xj, Gi) = −xj.
That is, if i has no atom at xi, then j won’t want to play anything on the
(0, xi] interval. �

Lemma 2.1.4. x1 = x2 = 0. Moreover, no player will place a mass-point at
x1 = x2 = 0.

Proof. Suppose that xi > xj. By lemma 2.1.3, we know that xj = 0. More-
over, if i places no atom at xi, then j places no density on the interval (0, xi].
Thus,

ui(xi, Gj) = Gj(0)− xi < lim
xi↓0

ui(xi, Gj) = Gj(0),

i.e., if i lowered the bottom of her support close to zero, she could lower her
costs and not change her probabilities of winning.

If i does put an atom at xi, then by lemma 2.1.3, j would place no density
on the open interval (0, xi). We have two cases:

3That is, j doesn’t want to bid a positive amount if she knows she is going to lose.
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1. If j does not put an atom at xi, then

ui(xi, Gj) = Gj(0)− xi < lim
xi↓0

ui(xi, Gj) = Gj(0),

i.e. if i moves the point-mass at xi close to zero she would not change
her probability of winning, but would spend less on bids.

2. If j does place an atom at xi, then4

ui(xi, Gj) = Gj(0) + Pj(xi)
2 − xi

< Gj(0) + Pj(xi)− xi
= lim

xi↓xi

ui(xi, Gj),

if xi < 1, showing that i can do better by spreading the atom at xi to
an ε-neighborhood just above it.
If xi = 1 instead,

uj(xi, Gi) = Pi(xi)
2 − 1 < ui(0, Gj) = 0,

so that j would prefer to place that mass at 0 instead of at xi.

We have just shown that xi ≤ xj. Of course, i and j could be reversed;
as a result, x1 = x2.

Note that each player j will place no atom at x1 = x2 – otherwise, their
opponent i could benefit from raising xi slightly:

ui(xi, Gj) = Pj(xi)
2 − xi < lim

xi↓xi

ui(xi, Gj) = Pj(xi)− xi.

By lemma 2.1.3, if player j places no atom at xi = xj, then xi = 0. This
concludes the proof that x1 = x2 = 0. �

Lemma 2.1.5. u∗1 = u∗2 = 0.
4I used “Pk(x)” to denote the size of the atom placed at x by player k.
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Proof. 5 Since no player has an atom at x1 = x2 = 0, u∗i ≥ u(0, Gj) = 0 for
each i ∈ I.

Assume, by way of contradiction, that u∗i > 0. Player i’s expected pay-
offs from any set of strategies she chooses with positive probability must be
exactly equal to u∗i .

Since u is continuous around 0, we can find a small enough (but with
positive measure!) interval around zero where expected payoffs would be
smaller, a contradiction.

Formally, there exists ε > 0 such that, for all 0 < δ < ε, player j will play
the (non-measure zero!) interval (0, δ) with positive probability.

But then, since u is continuous at 0 (from Gj being continuous at 0),

lim
γ↓0

u(γ,Gj) = u(0, Gj) = 0 < u?i

i.e. for δ small enough, the expected payoffs from choosing in (0, δ) must
be strictly less than u∗i . This can’t be, as any positive measure interval that
is played in equilibrium should yield the same expected payoffs u∗i . Thus,
u∗i = 0. �

Lemma 2.1.6. x1 = x2 = 1.

Proof. Suppose not. Assume xi > xj. Then,

0 = u∗i < 1− xj = lim
x↓xj

ui(x,Gj),

that is, i would benefit from moving mass to a point just above xj and
winning for sure, for a price xj < 1 (by lemma 2.1.2). Thus, any Nash
equilibrium will be such that the top of both players’ supports is at their
common valuation of 1. �

Now that we have established the bounds of both players’ supports, we
begin to discuss the equilibrium distributions in earnest.

Lemma 2.1.7. There’s no mass points on the half open interval (0, 1].
5This proof looks complicated but the idea is very simple. Somewhat informally speak-

ing, since 0 is in the mixed-strategy support, expected payoffs in equilibrium must equal
the payoffs at 0. The difficulty is that this is not completely true, since 0 has measure
zero, and thus technically it could have been possible for the expected payoffs from the
equilibrium mixed strategies to actually be greater than the payoffs at zero. This ends up
not being the case, due to u being continuous at 0.

6



Proof. Suppose Gi has a mass point at xi ∈ (0, 1], i.e. it has a “jump” at xi.
For xi < 1, this implies that it is worthwhile for j 6= i to transfer mass from
an ε-neighborhood below xi to some δ-neighborhood above xi, since

lim
xj↑xi

uj(xj, Gi) = Gi(xi)−Pi(xi)− xi

< Gi(xi)− xi
= lim

xj↓xi

uj(xi, Gi).

For xi = 1, it pays for j to transfer mass from an ε-neighborhood below
xi to zero, since:

lim
xj↑1

uj(xj, Gi) = 1−Pi(xi)− 1 < uj(0, Gj) = 0.

Either way, there would be an ε-neighborhood below xi in which j would
put no mass. But then it can’t be an equilibrium strategy for i to put mass
at xi. In symbols,

∃ε > 0, ∀δ ∈ (0, ε),
ui(xi, Gj) = Gj(xi − ε)− xi

< ui(xi − δ,Gj)
= Gj(xi − ε)− xi + δ,

i.e. i would benefit from moving mass from xi to xi− δ in the interval where
j is not bidding.

This shows that any mass-point in the (0, 1] interval is incompatible with
both players choosing best-responses to their opponents’ actions. We have
previously shown that there will be no atoms at 0 either. Thus, a Nash
equilibrium of the all-pay auction will not have any mass-points. �

Lemma 2.1.8. The two players randomize continuously with full [0, 1] sup-
port.

Proof. Suppose that there is an interval (x′, x′′) ⊂ [0, 1] where player i places
no probability mass. Pick one such interval where, for each ε > 0, Gi(x′′ +
ε)−Gi(x′′) > 0, i.e. x′′ is the “largest” point satisfying6 G(x′) = G(x′′). This

6Such a x′′ exists since there are no mass-points in i’s distribution, implying Gi is
continuous. Thus, if x′′ = sup{x ∈ [0, 1] : Gi(x) ≤ Gi(x′)}, then Gi(x′′) = Gi(x′).
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is just to make sure there’s some probability mass in the interval just above
x′′.

We have that j can’t have any density on (x′, x′′) either, or she would
rather transfer it all to x′: after all, for all x ∈ (x′, x′′),

uj(x,Gi) = Gi(x′)− x < Gi(x′)− x′ = uj(x′, Gi).

Since j is not playing anything on (x′, x′′),

lim
x↓x′′

ui(x,Gj) = Gj(x′)− x′′ < ui(x′, Gj) = G(x′)− x′.

i.e. anything too close to x′′ from above is worse than picking x′, and so i
would benefit from transferring some mass from the ε-neighborhood of x′′ to
x′.

This shows that a “gap” in the support means one of the players can’t
possibly be choosing a best-response to their opponent’s actions. Therefore,
in any Nash equilibrium the two players will randomize continuously on the
full [0, 1] support. �

Now we are ready to finish proving the Theorem.
If x ∈ suppGi = [0, 1], then

u∗i = 0 = Gj(x)− x

that is, Gj(x) = x.
Of course, the same argument implies Gi(x) = x in [0, 1] as well, which

concludes the proof. �
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